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The powerful combination of analytical chemistry and chemometrics and its application to wine analysis
provide a way to gain knowledge and insight into the inherent chemical composition of wine and to
objectively distinguish between wines. Extensive research programs are focused on the chemical
characterization of wine to establish industry benchmarks and authentication systems. The aim of
this study was to investigate the volatile composition and mid-infrared spectroscopic profiles of South
African young cultivar wines with chemometrics to identify compositional trends and to distinguish
between the different cultivars. Data were generated by gas chromatography and FTMIR spectroscopy
and investigated by using analysis of variance (ANOVA), principal component analysis (PCA), and
linear discriminant analysis (LDA). Significant differences were found in the volatile composition of
the cultivar wines, with marked similarities in the composition of Pinotage wines and white wines,
specifically for 2-phenylethanol, butyric acid, ethyl acetate, isoamyl acetate, isoamyl alcohol, and
isobutyric acid. Of the 26 compounds that were analyzed, 14 had odor activity values of >1. The
volatile composition and FTMIR spectra both contributed to the differentiation between the cultivar
wines. The best discrimination model between the white wines was based on FTMIR spectra (98.3%
correct classification), whereas a combination of spectra and volatile compounds (86.8% correct
classification) was best to discriminate between the red wine cultivars.
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INTRODUCTION

Traditionally, the only way to discriminate between wines
was by sensory evaluation. Due to the subjective nature of this
approach, chemical and spectroscopic analyses in combination
with statistical techniques were explored and found to be robust,
precise, and objective (1, 2).

Many different types of analytical data have been used to
investigate the chemical composition of wine in order to
distinguish between wines from different cultivars, each provid-
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ing a unique set of information. Some examples of composi-
tional information that have been used to discriminate between
wine cultivars include phenolic compounds (3, 4) and volatile
compounds (5, 6). Data obtained with electronic nose and
electronic tongue (7, 8) detectors were used to discriminate
between wines. Inaddition, different spectroscopic methods (9—11)
have been applied successfully to discriminate between wine
cultivars.

The volatile composition of wines can possibly be linked the
strongest to sensory analysis, the traditional method of distin-
guishing wines, as these compounds are primarily responsible
for the distinct flavor of wine. Higher alcohols, esters, and
volatile fatty acids are especially useful for investigating
differences and similarities between wines, as they appear to
be generic to most wine cultivars (5). In fact, strong correlations
have been found between grape variety and the main byproduct
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of yeast amino acid metabolism, specifically iso-acids and higher
alcohols, ethyl esters of iso-acids, and acetate esters of higher
alcohols (5, 6).

Fourier transform mid-infrared (FTMIR) spectroscopic data
contain a wealth of information on the composition of wine
that is not necessarily connected to specific compounds (2). The
FTMIR spectra of wine samples can therefore be regarded as a
compositional fingerprint of the wines.

Data analytical techniques play a vital role in the interpretation
of chemical and instrumental properties of wine. The use of
chemometrics allows the analyst to gain more insight into
complex data sets and to comprehensively represent the
multidimensional variability commonly associated with wine
(12). Several data analysis tools can be used to investigate the
intrinsic characteristics of wine. Two methods that are com-
monly used are principal component analysis (PCA) and linear
discriminant analysis (LDA) (13, 14). PCA is an unsupervised
classification technique that is used to observe the underlying
structure of a data matrix. PCA results typically show the degree
of similarity between samples and the influence of variables,
such as chemical properties, on these similarities (15). LDA is
a supervised classification technique that uses the distances
between samples in the data space to establish a classification
model. Such a classification model can be used to classify
unknown samples into sample categories based on their chemical
properties (16).

Thorough knowledge of South African wine cultivars is
especially important, as cultivars play an important role in the
South African wine market dynamics. Although the chemical
properties of South African cultivar wines have been determined
in several studies (4, 17), little is known about the combination
of volatile composition and FTMIR spectroscopy as a tool to
investigate the differences and similarities that exist between
South African cultivar wines.

Therefore, the aim of this paper was to investigate the role
of volatile composition and FTMIR spectra in the differentiation
between over 400 South African young wines of single-cultivar
Pinotage, Merlot, Cabernet Sauvignon, Shiraz, Chardonnay, and
Sauvignon Blanc. Young wines were used to exclude variability
caused by oak maturation, blending, and bottle aging. Further-
more, the analysis of different instrumental signals with ch-
emometric techniques for classification of young wines into
cultivar groupings was investigated. The analytical data gener-
ated in this study were used to create a database of the volatile
composition of South African young wines. To the authors’
knowledge, this is the first report on the volatile composition
and FTMIR spectroscopic properties of such a large number of
South African young cultivar wines.

MATERIALS AND METHODS

Wines. A total of 496 single-varietal young wines that were entered
in the annual South African Young Wine Shows of 2005 and 2006
were collected and analyzed. The wines were made from Sauvignon
Blanc, Chardonnay, Pinotage, Merlot, Cabernet Sauvignon, and Shiraz
grapes. As determined by the entry requirements of the South African
Young Wine Show, the wines were single-cultivar wines that had not
undergone aging. The use of young wines for this study limited the
variance caused by blending, oak maturation, and bottle aging. Table
1 shows the distribution of the sample set in terms of cultivar and
vintage. As illustrated in Table 2, the basic chemical composition of
the wines was well within the normal parameters associated with young
wines. The average fructose concentrations of the Sauvignon Blanc
and Chardonnay wines were similar, but this is probably not
significant.

Chemicals, Standards, and Wine Matrix Simulant. Chemicals
and Sandards. Ethyl acetate and isoamy| acetate were purchased from
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Table 1. Number of Wine Samples in Each Cultivar Group and Their
Distribution between the Training and Test Datasets As Used in the Linear
Discriminant Analysis Cultivar Classification Model

2005 2006
cultivar total trainingset testset total ftraining test total
Sauvignon Blanc 56 42 14 47 32 15 103
Chardonnay 44 28 16 26 18 8 70
Pinotage 35 23 12 27 18 9 62
Shiraz 52 40 12 37 26 11 89
Cabernet Sauvignon 57 41 16 32 17 15 89
Merlot 49 35 14 34 25 9 83
total 293 209 84 203 136 67 496

Riedel de Haén (Seelze, Germany). Methanol, hexanol, acetic acid, and
2-phenylethanol as well as diethyl ether, ethanol, and Na,SO, were
purchased from Merck (Darmstadt, Germany). Ethyl butyrate, propanol,
isobutanol, butanol, hexyl acetate, ethyl lactate, propionic acid, isobu-
tyric acid butyric acid, isovaleric acid, diethyl succinate, valeric acid,
2-phenylethyl acetate, 4-methyl-2-pentanol, and hexane were purchased
from Fluka (Buchs, Switzerland). Hexanoic acid, octanoic acid, isoamyl
alcohol, ethyl octanoate, and ethyl decanoate were purchased from
Aldrich (Steinheim, Germany). Decanoic acid and ethyl hexanoate were
purchased from Sigma (St. Louis, MO).

Wine Matrix Smulant. The internal standard and volatile standards
were dissolved in a wine simulant consisting of 12% v/v ethanol and
2.5 g/L tartaric acid (Merck) in deionized water from a Milli-Q water
purifying system from Millipore (Billerica, MA). The pH was adjusted
to 3.5 with 0.1 M NaOH (Merck).

Liquid—Liquid Extraction Procedure. Five milliliters of wine with
internal standard, 4-methyl-2-pentanol (100 xL of 0.5 mg/L solution
in wine simulant), was extracted with 1 mL of diethyl ether by
sonicating the ether/wine mixture for 5 min. The wine/ether mixture
was then centrifuged at 3600g for 3 min. The ether layer was removed
and dried on Na,SO,. Each extract was injected into the GC-FID in
triplicate. Validation of the method, in terms of selectivity, linearity,
limits of detection, limits of quantification, recovery, robustness, and
repeatability, has been described (18).

Gas Chromatographic Conditions. A J&W DB-FFAP capillary
GC column (Agilent, Little Falls, Wilmington, DE) with dimensions
60 m length x 0.32 mmi.d. x 0.5 um f.t. and a Hewlett-Packard 6890
Plus GC (Little Falls, DE) equipped with a split/splitless injector and
an FID detector were used. The initial oven temperature was 33 °C for
17 min, after which the temperature was increased by 12 °C/min to
240 °C, at which it was held for 5 min. Three microliters of the diethyl
ether extract was injected at 200 °C. The split ratio was 15:1, and the
split flow rate was 49.5 mL/min. The column flow rate was 3.3 mL/
min using hydrogen as a carrier gas. The detector temperature was 250
°C. After each sample run, a postrun of 5 min at an oven temperature
of 240 °C, with a column flow of 6 mL/min, cleaned the column of
high-boiling contaminants.

FTMIR Spectroscopy. Samples were filtered prior to spectroscopic
analysis, using a filtration unit (type 79500, FOSS Analytical, Denmark)
connected to a vacuum pump to remove coarse particles that could
damage the cuvette. The filtration process also limits the amount of
CO; in the wines, which can cause spectral interferences (19).

Filter paper disks graded with pore size of 20—25 um and a diameter
of 185 mm (Schleicher & Schuell, Germany) were used for filtration.
A WineScan FT 120 spectrometer equipped with a Michelson inter-
ferometer (Foss Analytical) was used to generate spectra in the
wavenumber region of 5011—929 cm™1. The samples were scanned at
4 cm™tintervals at 40 °C using a CAF,-lined cuvette with a fixed path
length of 37 um. FTMIR spectra were recorded in transmittance mode,
and a transmittance spectrum of each sample was converted to a
linearized absorbance spectrum (19). The WineScan is an application
instrument designed specifically for wine analysis. The spectral
preprocessing is proscribed (19) and is therefore not accessible to change
by the user. The full spectral range, 5011—929 cm™?, was stored for
each wine.
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Table 2. Concentration Range, Average, and Standard Deviation of the Major Chemical Parameters of South African Young Wines per Cultivar

cultivar pH volatile acids (g/L) total acids (g/L)

malic acid(g/L) glucose (g/L) fructose (g/L) alcohol (% v/v)

Sauvignon Blanc (103)2 3.2—4.0 (3.5 & 0.1)® 0.3—0.8 (0.4 & 0.1) 52—7.6(62+05) 2.0-58 (34 £07) 0.0—4.1(0.7 £0.7) 04—4.3(1.6+09) 10.4—147 (12.6 £0.7)
Chardonnay (70) 34-42(37+02) 02-07(04+01) 43-6.3(55+04) 04—4.2(27+07) 00-1.7(03+0.3) 04—43(1.6+09) 124—152(13.9+05)
Pinotage (62) 35-46(39+02) 04—08(0.601) 42-60(51+03) 0.0-07(0.20.1) 0.0-2.9(0.505) 0.4—6.4(13+09) 10.8—16.6 (14.2 + 1.1)
Shiraz (89) 33-42(38+£02) 03-08(0.5+0.1) 44-6.4(53+04) 0.0-1.6(0.3+02) 0.0-2.0(0.8=04) 0.0-6.3(12+08) 11.8—16.0 (143 +0.8)
Cabernet Sauvignon (89) 3.4—45(39+02) 0.1—0.8 (0.4 & 0.1) 45-65 (54 +03) 0.1-23(04+02) 0.0-27 (024 04) 0.0-52(1.1£07) 12.0-15.6 (14.1 £ 0.8)
Merlot (83) 32-43(38+02) 02-08(0.4+01) 44—73(54+04) 01—21(04+03) 0.0-1.3(04+03) 0.1-38(1.0+£06) 12.4—15.2(13.9 + 0.5)

@ Number of samples. ® Minimum—maximum (average + standard deviation).

Statistics. Data Pretreatment. The wavenumber regions 5011—2970
and 1716—1543 cm™ were omitted in the multivariate data analyses
except where specifically stated that the entire spectrum was used. The
two regions 1716—1543 and 3627—2971 cm™! contain strong water
absorption peaks, whereas the region 5011—3627 cm™* contains very
little useful wine-related information (19—21). In samples having a
chemical component that was present below the limit of detection, a
concentration value of 0 g/L was used for that particular component in
chemometric analysis of the data. The data were centered and scaled
to the same variance by standardization throughout all multivariate
statistical procedures.

Principal Component Analysis (PCA). PCA was performed with The
Unscrambler 9.2 software (CAMO Process AS, Oslo, Norway), using
cross-validation (20 segments) as a validation method, in order to
observe correlations between observations and variables in the data
(22).

Linear Discriminant Analysis (LDA). LDA was performed using
Statistica 7 (Statsoft Inc., www.statsoft.com) to classify the wines into
their respective cultivar groupings. A multiple linear classification
approach was used with the assumption of equal covariance matrices.
The LDA model was validated using test set validation. For this
analysis, the data were randomly divided into a training set and a test
set, representing 70 and 30% of the total data set, respectively.
Histograms of the cultivar, vintage, and origin distribution of the
samples in the training and test sets were plotted in Statistica 7 and
compared to ensure that the test and training sets were representative
of the original data set. The distribution of the sample set among the
training and test sets is shown in Table 1.

For the models based on FTMIR spectra, PCA was done on the
training set during which the PCA scores were calculated. The optimum
number of principal components for this step was calculated with cross-
validation. Subsequently, a LDA was done on the PCA scores.
Validation was done by calculating the PCA scores of the test set, using
the PCA model derived from the training data. These PCA scores were
then used as input to the LDA model developed on the calibration set.
For the models based on the volatile composition of the wines the
variable set was refined using best subset regression based on the
calibration data.

Supplementary Statistics. One-way analysis of variance (ANOVA)
was performed in Statistica 7, using the Tukey posthoc test, to identify
the volatile compounds that occurred at significantly different concen-
trations between cultivars. Factorial ANOVA was performed to
determine whether there were significant interactions between vintages
and cultivars. Radar graphs of the volatile compounds present in the
cultivar wines were plotted in Excel on the basis of the average
concentration per cultivar. The data were standardized to compensate
for the large variation in the concentrations at which the different
compounds occurred in the wines.

RESULTS AND DISCUSSION

Comparison of the Volatile Composition. Summaries of
all the analyzed compounds and their concentration ranges in
the white and red wines are given in Tables 3 and 4,
respectively. Tables 3 and 4 also show the odor thresholds for
each compound as reported in the literature and their odor
activity value (OAV) in each cultivar. OAVs were calculated
by dividing the mean concentration value of a compound by
its odor threshold value as reported in the literature (23).

Of the 26 volatile compounds, 14 had OAVs > 1, meaning
that they make an active contribution to the odor of the wine.
These compounds were isobutanol, isoamyl alcohol, 2-phenyle-
thanol, ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl
hexanoate, ethyl octanoate, butyric acid, isovaleric acid, hex-
anoic acid, and octanoic acid.

Sauvignon Blanc contained significantly higher average
concentrations of decanoic acid, hexyl acetate, and octanoic acid
when compared to Chardonnay. In turn, Chardonnay contained
significantly higher amounts of ethyl hexanoate. Three of these
compounds were present in odor active quantities in both
Sauvignon Blanc and Chardonnay. The profiles of Sauvignon
Blanc and Chardonnay in terms of these compounds are
illustrated in Figure 2.

The fatty acids decanoic acid and octanoic acid are derived
from acetyl-CoA, which is, in turn, formed from pyruvic acid,
an important byproduct of alcoholic fermentation (24). Hexyl
acetate is derived from hexanol, which can be a grape constituent
or formed from hexanoic acid (25). Hexanoic acid is also the
precursor of ethyl hexanoate. It seems as if there are metabolic
links between the fermentation compounds responsible for the
differences between Chardonnay and Sauvignon Blanc.

No statistical differences were observed between the white
cultivars based on the concentrations of the other volatile
compounds. This suggests that the volatile composition as
determined in this study does not play a very important role in
the differentiation between young Sauvignon Blanc and Char-
donnay wines. However, other volatile compounds that have
not been determined in this study, such as methoxypyrazines,
which have been found to play a significant role in Sauvignon
Blanc aroma (26), might be more appropriate to elicit the
differences between these two cultivars.

The Pinotage wines differed significantly from the other red
wines with regard to 2-phenylethanol, butyric acid, ethyl acetate,
isoamy| acetate, isoamyl alcohol, and isobutyric acid concentra-
tion levels. Pinotage wines were in fact more comparable to
the two white wine cultivars than the other red wine cultivars
in terms of these compounds (Figure 3). Apart from isobutyric
acid and propionic acid, all of these compounds occurred at
odor active quantities in Pinotage. This is not the first study in
which Pinotage wines have been found to compare better to
white wines than red wines. De Beer et al. (27) reported that
the antioxidant potential of Pinotage wines was significantly
lower than that of other South African red wines. At the time
the authors could not relate this phenomenon to the phenolic
composition of Pinotage wines, but hypothesized that differences
in individual phenolic compounds and/or the ratios at which
they occur (27) could play a role.

The Merlot wines also differentiated from the other red wines,
having significantly lower amounts of 2-phenylethyl acetate and
signicantly higher amounts of isobutanol, propionic acid, and
valeric acid. In fact, Merlot was the only cultivar in which the
compounds propionic acid and isobutanol had an OAV > 1
(Table4). The Shiraz wines differed significantly from the other
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Table 3. Odor Threshold Values Reported in the Literature, Concentration Ranges, and Average Concentrations (All in Milligrams per Liter) Determined in
This Study, as well as Odor Activity Values for South African Sauvignon Blanc and Chardonnay Young Wines

Sauvignon Blanc (103)?

Chardonnay (70)

analyte OTH? range average OAV® range average OAV
methanol 21.5—180.5 77.83a° 50.6—482.0 105.95 a
propanol 306 (30) 19.2—-82.7 36.17 a 0.1 20.6—176.6 56.40 a 0.1
butanol 150 (37) 0.3—-25 0.94a 0 nd?—2.2 117a 0
isobutanol 40 (23) 2.3—38.0 16.48 a 0.4 2.3-316 156.71a 0.2
isoamy! alcohol 30 (23 115.4—394.4 177.47 a 5.9 103.7—414.1 162.78 a 1.7
hexanol 8(23) 0.1-3.6 1.19a 0.1 nd—2.7 1.04a 0.1
2-phenylethanol 14 (5) 6.9—59.3 12.83a 0.9 5.8—62.1 1325a 0.6
ethyl acetate 12.26 (39) 30.2—223.6 89.99 a 73 20.8—307.5 100.94 a 3.1
ethyl butyrate 0.02 (23 0.2—1.7 0.54 a 271 nd—1.9 0.66 a 17.9
isoamyl acetate 0.03 (23 1.1-16.2 5.03a 167.5 0.5—14.9 427a 82.3
ethyl hexanoate 0.014 (5) 0.3—1.4 0.74b 52.7 04-2.3 1.01a 34.1
hexyl acetate 1.5(37) nd—1.1 0.22a 0.1 nd—0.9 0.09b 0.1
ethyl lactate 154.6 (32) nd—42.8 10.71a 0.1 nd—130.6 19.61a 0.2
ethyl octanoate 0.005 (5) nd—2.6 0.73a 146.7 0.2—0.9 0.50a 37.2
ethyl decanoate 0.2 (%) nd—0.8 0.18a 0.9 nd—0.4 0.14a 0.5
diethyl succinate 200 (31) nd—3.5 043a 0 nd—16.8 117a 0
2-phenylethyl acetate 0.25 (23) nd—0.9 0.16 a 0.6 nd—0.6 0.12a 0.5
acetic acid 200 (23) 101.5—1648.1 408.08 a 2 110.1—1140.3 395.35a 0.9
propionic acid 20 (24) 1.2—43.0 8.82a 0.4 0.0—53.8 14.96 a 0.9
isobutyric acid 2.3(5) nd—2.7 1.02a 04 01-22 1.00a 0.2
butyric acid 0.173 (5) 0.8—3.8 1.83a 10.6 nd—4.3 2.02a 3.4
isovaleric acid 0.033 (5) 0.2—-2.0 0.80a 24.3 0.1-32 0.89a 15.8
valeric acid 0.0-04 0.02a 0.0-04 0.04a
hexanoic acid 0.42 (5) 3.3—-137 5.77a 13.7 1.7-104 519a 2.9
octanoic acid 0.50 (5) 1.7-10.3 6.17a 12.4 1.2—9.6 470b 4.2
decanoic acid 1(5) 0.4—34 142a 14 0.4-2.0 1.07b 0.4

@ Number of samples. ® OTH, odor threshold. The numbers in parentheses refer to the literature source. ° Odor activity value. @ Tukey HSD values: different letters in
the same row indicate significant differences in the average concentration of the respective cultivars. ©Not detected.

Table 4. Odor Threshold Values Reported in the Literature, Concentration Ranges, and Average Concentrations (All in Milligrams per Liter) Determined in
This Study, as well as Odor Activity Values for South African Red Cultivar Young Wines

Pinotage (62)° Cabernet Sauvignon (89) Merlot (83) Shiraz (89)

analyte OTH® range average OAV° range average OAV range average OAV range average OAV
methanol 70.7—284.8  157.75¢¢ 82.0—407.9 207.73b 124.7—406.7 253.50a nd®—433.1 236.94 a
propanol 306 (30) 4.8—213.7 94.64 a 03 33-975 45.41 bc 0.1 17.4-851 4.7c 0.1 2.6—180.2 53.33b 0.2
butanol 150 (31) 0.8—-3.3 2.05a 0 1.1-5.0 1.99a 0 1.0-3.4 191a 0 1.0-8.0 2.15a 0
isobutanol 40 (23 34-54.8 24.75b 06 23-845 24.03b 06 249-979  5848a 1.5 45-68.8 24.89b 0.6
isoamyl alcohol 30 (23) 119.6—331.1 216.77¢ 72 159.5—580.3 379.44a 23 206.1—642.3 36042a 12 194.6—487.6 320.75b 10.7
hexanol 8(23 0.2—21 1.06 b 01 07-54 1.79a 0.1 03—44 1.27b 02 05-55 1.89a 0.2
2-phenylethanol 14 (5) 7.8—47.3 18.87 ¢ 1.3 24.5—1421 68.73 a 17 18.8—1554 66.99a 48 16.9—96.3 44.08 b 3.1
ethyl acetate 1226 (32) 30.3—1585 85.04 a 6.9 37-103.4 62.97b 13 27.7-119.3 65.76b 54 202—1271 68.54b 5.6
ethyl butyrate 0.02(23) nd-7.3 0.35a 18 nd—2.0 0.16a 10.7 nd—1.9 0.23a 11.6 nd—44 0.19a 9.5
isoamy! acetate 0.03(23) 03-77 2.65a 886 nd—5.8 0.96 b 244 02-47 1.30b 435 02-58 1.39b 46.2
ethyl hexanoate 0.014(5 0.1-0.8 0.34a 242 nd—05 0.20b 84 nd—0.9 0.39a 28.1 nd—16 049a 35
hexyl acetate 1.5 (31) nd—1.6 0.03a 0 nd nda 0 nd nda 0 nd nda 0
ethyl lactate 154.6 (32 512—210.7 12526 a 0.8 19.6—194.7 100.61 b 02 4.1-1824 83.67 ¢ 05 235-208.1 100.53b 0.7
ethyl octanoate 0.005(5 0.1-0.8 0.27 ab 539 nd—0.3 0.09¢ 11.6 nd—0.7 0.32a 645 nd—3.4 0.12bc 231
ethyl decanoate 02 (5 nd—0.3 0.10b 05 nd—02 0.02¢c 0.2 nd—0.6 0.15a 0.8 nd—0.2 0.02¢ 0.1
diethyl succinate 200 (37) 1.3—-223 8.24b 0 21-19.4 10.87 a 0 1.0—17.6 8.07b 0 1.3—19.6 10.15a 0.1
2-phenylethyl acetate 025(23) nd—04 0.15ab 06 nd—13 0.19a 0.8 nd—0.4 0.06 ¢ 0.3 nd—1.5 0.13b 0.5
acetic acid 200 (23) 268.7—889.2 597.52a 3 251.8—1011.5 526.89ab 0.6 39.8—1122.1 491.27b 25 336.0—9456 568.43a 2.8
propionic acid 20 (24) 1.7-127.6 17.17b 09 08-43 279c¢c 0 2.0—-357.0 40.89a 2 1.9-6.1 3.43¢ 0.2
isobutyric acid 2.3(9 0.3—2.6 1.43b 06 08-78 2.02a 04 06-73 2.18a 09 05—43 1.88a 0.8
butyric acid 0.173(5) 0.6—3.3 1.30a 75 nd—1.8 0.98b 16 04-19 0.97b 56 04-26 0.97b 5.6
isovaleric acid 0.033(5 0.4-26 1.38¢ 417  0.9-46 284a 244 08-8.0 273a 828 0.8—38 2.06b 62.4
valeric acid 0.0-0.7 0.14b 0.0-0.3 0.05¢ 0.0—16 031a nd ndc
hexanoic acid 0.42 (%) 0.8—4.3 194 a 46 nd—31 1.57 ab 09 05-26 1.50 ab 36 nd—25 1.43b 34
octanoic acid 0.50 (%) 0.8—4.1 1.77 ab 35 0.6—407.9 1.45 ab 11 0.3-31 181a 36 04-38 1.29b 2.6
decanoic acid 1(5) nd—1.7 0.62 ab 0.6 nd—1.1 0.57b 05 nd—1.7 0.79a 0.8 nd—1.0 0.19¢ 0.2

@Number of samples. ® OTH, odor threshold. The numbers in parentheses refer to the literature source. ° Odor activity value. ? Tukey HSD values: different letters in
the same row indicate significant differences in the average concentration of the respective cultivars. ©Not detected.

red wines in terms of decanoic acid, 2-phenylethanol, isoamyl
alcohol, and isovaleric acid, although decanoic acid did not occur
at odor active quantities in the any of the red wines. Cabernet
Sauvignon was comparable to at least one red cultivar except
in terms of ethyl hexanoate, of which it contained significantly
lower amounts. The differences between the volatile profiles

of the red cultivars are shown in Figures 3 and 4 There were
no significant differences between the red cultivars in terms of
butanol, ethyl butyrate, or hexyl acetate levels.

These results are in agreement with previous reports. The
differences observed between Pinotage and Cabernet Sauvignon
wines are similar to the results from a previous study conducted
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Figure 1. Typical FTMIR spectrum of a young red wine and a young
white wine. The indicated wavenumber regions 1716—1543 and 3627—2971
cm™", respectively, are characterized by strong water absorption peaks.
The red wine spectrum was plotted with an offset of 0.5 unit for the sake
of clarity, and therefore the values on the y-axis are not shown.
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Figure 2. Volatile composition profiles of Chardonnay and Sauvignon
Blanc wines based on the average concentration per cultivar for some
significant compounds.
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Figure 3. Volatile composition profiles of the six wine cultivars based on
the average concentration per group. The Pinotage profile is more
comparable with the white wines than the other red wines.

on South African wines, except in the case of ethyl lactate and
2-phenylethyl acetate (17). Furthermore, a previous study has
shown that the fusel alcohol acetates, iso-acids, and fusel
alcohols discussed above contributed significantly to the dif-
ferences between grape varieties (5). These compounds are
linked to the amino acid metabolism of yeast cells and, as
Ferreira et al. (5) suggested, the differences in the concentration
of these yeast metabolites could be due to the unique amino

J. Agric. Food Chem., Vol. 57, No. 7, 2009 2627

Z-Pnenyletnyl Acetate
1

Decanoic Aci

Isovaleric Acid Ethyl Hexanoate

Shiraz = = - Pinotage = - - : Cabernet — — Merlot

Figure 4. Volatile composition profile of the four red wine cultivars based
on the average concentration per group for some significant compounds.

acid profiles of the cultivars. The fact that many of the
compounds discussed above have common amino acid precur-
sors supports this statement.

Contribution of FTMIR Spectra and Volatile Composition
to the Differentiation between Cultivars. PCA was perfor-
med to investigate and interpret the contribution of FTMIR
spectra to the differentiation between cultivar wines. Separation,
with some degree of overlap, was observed between the
Chardonnay and Sauvignon Blanc wines on the basis of their
spectra (Figure 5). The first two principal components explained
90% of the variance in the data. The loading plot showed that
the wavenumbers with high loadings were distributed over the
entire wavenumber range and included a large sequence of
continuous wavenumbers. The degree of differentiation between
the two white cultivars decreased when volatile compounds were
included in the variable set (data not shown). These results
suggested that the differentiation between the Chardonnay and
Sauvignon Blanc wines could be attributed to the wines’
chemical composition as a whole and not only to the volatile
compounds. This observation was supported by the fact that
only four of the volatile compounds occurred at statistically
different levels between the Chardonnay and Sauvignon Blanc
wines, as discussed before.

The opposite was noted for the red wines, where the volatile
components contributed more to the differences between cul-
tivars than the spectra. No cultivar groupings could be observed
with PCA of the reds when only the spectra were used as
variables (data not shown). It has previously been reported that
poor differentiation was observed between red wine cultivars
on the basis of their MIR spectra using PCA (14), as well as
with hierarchical cluster analysis and SIMCA (9). Spectroscopic
differentiation between red wine cultivars has been reported to
be more successful when focusing on the phenolic composition
of the wines by the analysis of their phenolic extracts either
with MIR spectroscopy or with UV—vis spectroscopy (9, 11).

PCA of the volatile compounds in 2005 differed from the
analysis of those of 2006 (Figures 6 and 7). As can be noted
for both vintages, the variances explained by the first two
components of both of these models are relatively moderate.
In each vintage it was found that the Pinotage wines separated
from the rest of the red cultivars, correlating well with the PCs
where isoamyl acetate had high positive loadings and the iso-
acids and isoamyl alcohol had high negative loadings (Figures
6 and 7). It has been established that isoamyl acetate plays an
important role in the varietal characteristics of Pinotage wines
(28). The high negative correlation between isoamyl alcohol
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Figure 5. PCA score and loading plots showing the differentiation between Sauvignon Blanc and Chardonnay samples based on their FTMIR spectra.
PC 1 and PC 2 explain 62 and 28% of the total variance in the data set, respectively.

and the iso-acids and Pinotage is consistent with the results from
the ANOVA tests. PCA of the red wines of vintage 2005 showed
that the Merlot wines formed a clear group based on high
positive loadings of propionic and decanoic acids and high
negative loadings of 2-phenylethyl acetate. However, for the
2006 vintage, the Merlot wines could not be separated from
the Shiraz or Cabernet Sauvignon wines (Figure 7). The Shiraz
and Cabernet Sauvignon wines from the 2005 vintage also
separated better from each other than those from the 2006
vintage. In both vintages, the separation between the Shiraz and
Cabernet Sauvignon wines was mainly due to high loadings of
2-phenylethanol, isovaleric acid, and isoamyl alcohol. These
compounds were negatively correlated with Shiraz. These results
are also consistent with the results from ANOVA tests.

To investigate whether the use of volatile compounds is useful
for discrimination between red cultivars, despite the observed
year differences, a PCA using volatile composition of both years
was done. Results showed that the Pinotage wines again clearly
separated from the other red cultivars (data not shown). These
results highlighted the need for using a multivariate data analysis
approach for cultivar characterization.

Factorial ANOVA of the volatile composition of the wines
showed that there were significant vintage to cultivar interactions
for almost all of the volatile compounds analyzed, indicating
that the variation over vintages was not consistent for each

cultivar. Therefore, it is understandable that differences in the
degree of separation between cultivars were observed between
the two vintages.

Classification of Cultivars Based on Chemical and Spec-
troscopic Properties. The two-dimensional plots generated with
PCA are useful for interpretation, but information useful for
discrimination may also be found in components with lower
explained variance. Therefore, LDA was also applied to classify
the wines into their respective cultivar classes. Generally good
classification results were achieved between the cultivar
wines.

Results for Red Wines. For the classification of the red wines,
an average classification success rate of 68% was achieved when
the entire spectral range (5011—929 cm™1) was used (Table
5). The average classification success rate of the red wines
increased to 77% whenwavenumbers 5011—2970and 1543—1716
cm~* were excluded from the analyses. These wavenumbers are
generally associated with spectral noise largely caused by water
absorbance. A subset of five volatile compounds was selected
with best subset regression for discriminant analysis. This subset
included decanoic acid, ethyl hexanoate, isoamyl acetate,
isobutanol, and isoamyl alcohol. These compounds were identi-
fied as significant compounds in the differentiation between the
red cultivar wines according to ANOVA results as discussed
in the second part of this Results section. Isoamyl acetate is
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Figure 6. PCA score and loading plots showing the differentiation between red cultivar wines from the 2005 vintage based on their volatile composition.
On the score plot (a), each symbol denotes a wine sample, whereas the line shapes indicate the location of samples of the same cultivar in the plot.
PC 1 and PC 2 each explain 21 and 18% of the total variance, respectively. The loading plot (b) shows the relative influence of the volatile compounds

in the differentiation between the wines.

particularly characteristic of Pinotage wines, although isoamyl
alcohol also differentiated this cultivar from the other red wines.
The inclusion of ethyl hexanoate in this subset is also interesting,
as this compound was significantly lower in Cabernet Sauvignon
wines than in the other red wines. Isobutanol and decanoic acid
played significant roles in differentiating Merlot and Shiraz
wines from the other wines, respectively. Decanoic acid is the
only compound in the subset that did not have an OAV > 1 for
any of the red wine cultivars. This subset of volatile compounds
resulted in a discriminant analysis model with an average correct
classification rate of 71%. The best result, 86% average correct
classification, was achieved using a combination of the entire
spectral range as discussed above and all 26 volatile compounds.
This is not the first case of better discrimination being observed
between red wine cultivars on the basis of their MIR spectra
using LDA, whereas poor discrimination was observed using
PCA on the same wines (14).

Bevin et al. reported a similar case with Australian wines;
they were able to correctly classify 93% of red wine cultivars
on the basis of their MIR using LDA even though they observed
little discrimination between the cultivars with PCA (14).

Results for White Wines. The spectroscopic data, the com-
positional data, and combinations thereof could all successfully
be used to discriminate between Sauvignon Blanc and Char-

donnay wines. A 98% correct classification rate was obtained
using the entire spectral range. In contrast to the modeling of
the red wines, the average classification success rate of the white
wines dropped to 93% when the wavenumbers associated with
noise (5011—2970 and 1543—1716 cm™1) were excluded from
the analyses. Some possible functional groups that could have
absorbance bands in these regions are the —CH stretches of
alkanes, alkenes, and alkynes. In addition, the —CH and C=C
stretches of aromatic compounds as well as the primary and
secondary —NH stretch of amines and the —C=O0 stretch and
—NH stretch and bend of amides are also found in this region
(29).

However, there is only a 5% difference in the classification
rate obtained when using the entire spectra versus selected
wavenumbers (Table 5), and the white cultivars could therefore
successfully be classified without the contribution of functional
groups that strongly absorb in the 5011—2970 and 1543—1716
cm~t wavenumber regions. The improvement of the classifica-
tion model by the use of a larger wavenumber region highlights
the value of FTMIR spectra as an information-rich and
nonselective instrumental signal.

Best subset regression identified butanol, decanoic acid, ethyl
hexanoate, isoamyl alcohol, methanol, propanol, and propionic
acid as the most influential compounds for the discrimination
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Figure 7. Score plot (a) of the PCA done on the volatile composition of the 2006 red wines shows that there was little differentiation between the
Cabernet Sauvignon (C), Shiraz (S), and Merlot (M) wines of this vintage. Pinotage (P) wines separated slightly from the other red wines on PC 1. PC
1 and PC 2 each explain 34 and 11% of the total variance, respectively. The loading plot (b) shows the influence of the respective volatile components

in the positioning of the wines on the score plot.

between the two white cultivars. Of these compounds only
decanoic acid and ethyl hexanoate were significantly different
between Sauvignon Blanc and Chardonnay according to ANO-
VA. Decanoic acid, ethyl hexanoate, and isoamyl alcohol were
the only compounds in the subset that were odor active in the
white wines. Nevertheless, a combination of these compounds
resulted in a discrimination model with an 83% correct
classification rate. A combination of the entire set of spectro-
scopic data and all 26 volatile compounds could be used to
correctly discriminate between Sauvignon Blanc and Chardon-
nay wines at an average correct classification rate of 93%. The
negative effect of the volatile compounds on the white wine
classification model is in accordance with the results of the PCA
that showed that the spectroscopic data had a larger influence
on the differences between Sauvignon Blanc and Chardonnay
wines.

There are of course many other data modeling options that
can be explored to optimize the classification success rate and
stability of a classification model. However, it is important to
note that both the FTMIR spectra and the volatile composition
each contribute to the classification of South African cultivar
wines. Different variable sets, such as spectroscopic measure-

Table 5. Percentage of Correct Classification between Cultivar Wines
Obtained with Linear Discriminant Analysis with Different Variable Sets
after Test Set Validation

volatile
entire selected volatile compounds® +
cultivar spectra®  wavenumbers® compounds®  entire spectra
Red Cultivars
Cabernet 48.6 68.6 62.9 71.4
Pinotage 84.0 76.0 88.0 100.0
Shiraz 50.0 83.3 66.7 86.7
Merlot 95.8 83.3 70.8 95.8
total 66.7 77.2 71.1 86.8
White Cultivars
Chardonnay 100.0 86.2 724 93.1
Sauvignon Blanc 96.9 100.0 93.9 93.9
total 98.3 935 83.8 935

aFTMIR spectra from 5011 to 929 cm~'. ®FTMIR spectra where the
wavenumbers regions 5011—2970 and 1716—1543 cm~' have been omitted.
°Compounds selected by best subset regression. ?Volatile compounds,
standardized.
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ments and chemical compounds, have been shown to contribute
uniquely to the variability in samples (33). This has important
practical implications. Although the simple and rapid method
of FTMIR spectroscopy is sufficient for the classification of
Sauvignon Blanc and Chardonnay wines, the volatile composi-
tion, which is more time-consuming to determine, is necessary
for reliable discrimination of the red wine cultivars. The viability
of using a sample preparation procedure to remove further
interfering compounds prior to FTMIR analysis can be inves-
tigated because it has been found that the MIR spectra of
phenolic extracts of red wines are more useful for discrimination
between red cultivar wines than of untreated wines (9). Such a
method could be compared to the GC-FID analysis used in this
study in terms of the quality of the discrimination models,
practicality, and cost effectiveness. The current work included
only six of the most important cultivars in the South African
wine industry, and it would be interesting to investigate the
contribution of FTMIR spectroscopy and GC-FID analysis on
the discrimination models with other cultivars included. The
discriminant power of FTMIR spectroscopy on white wine
cultivars should especially be tested by including more white
wine cultivars. Because the current study was done on young
wines only, additional discrimination models could also be
developed for matured wines.

In conclusion, the results of this study confirmed that South
African Sauvignon Blanc, Chardonnay, Merlot, Pinotage, Cab-
ernet Sauvignon, and Shiraz wines differ significantly in terms
of yeast-derived volatile components and FTMIR spectra.
Statistical differences were found in the volatile compositions
of the cultivar wines. Fourteen of the volatile compounds
analyzed were present at odor active quantities. Similarities were
observed between Pinotage wines and white wines. On the basis
of PCA, it seemed that most of the differences between red
wines were due to the volatile constituents, although the FTMIR
spectra contributed considerably to distinction between the white
wines. This trend followed through in the discriminant models
for the classification of the red and white wine cultivars. The
most successful classification rate for the red wines was achieved
with a combination of the entire infrared spectra and volatile
compounds, whereas the best discriminant model for the white
wines was based on only the spectroscopic data, showing that
both FTMIR spectra and volatile components play a role in the
differentiation between young South African cultivar wines.

ABBREVIATIONS USED

ANOVA analysis of variance; FID, flame ionization detection;
FTMIR, Fourier transform mid-infrared; GC, gas chromatog-
raphy; GC-FID, gas chromatography with flame ionization
detection; LDA, linear discriminant analysis; nd, not detected
(below limit of detection); MIR, mid-infrared; OAV, odor
activity value; OTH, odor threshold; PC, principal component;
PCA, principal component analysis; SIMCA, soft independent
modeling of class analogies; UV—uvis, ultraviolet—visible.
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